Autosurvey.JP HOMEサイトマップお問い合わせFAQ
Autosurvey.JPは、世界の自動車市場の情報提供サイトです。(本サイトは株式会社ユーディーアール(旧ディーアールアイ)が運営しています。)
HOME 市場調査/コンサルティング 提携調査会社 調査レポート ニュース・海外重要トピックス 展示会/イベント リンク集 会社概要 English
市場調査レポートカテゴリ
カーエレクトロニクス
自動車
自動車部品
アフターマーケット
テレマティックス
燃料電池
その他(素材、燃料等)
二輪車市場
機関車・列車
充電設備
電気自動車
燃料電池車
ハイブリッド車
自動車保険
カーセキュリティ
電動バイク
M2M
ロジスティクス
特殊車両
自動車用ロボット
エネルギーハーベスティング
圧縮天然ガス車
コネクテッドカー
自動走行車
自動車技術
車載インフォテイメント
駐車場管理システム
オーディオ
自動車通信技術
 提供サービス
市場調査/
コンサルティング
提携調査会社
調査レポート一覧
ニュース/
海外重要トピックス一覧
展示会/イベント一覧
自動車産業リンク集
会社概要
お知らせ
お問い合わせ/ご注文
   
 
 
   
市場調査報告書
レポートカテゴリー
カーエレクトロニクス 自動車 自動車部品
アフターマーケット テレマティックス 燃料電池
その他(素材、燃料等) 二輪車市場 機関車・列車
充電設備
電気バス向けリチウムイオン電池 2016-2026年:電気バス対応技術、市場動向、予測、主要企業
Lithium-ion Batteries for Electric Buses 2016-2026:Technologies (LFP, NMC, LMO, LFMP, NCA, Supercapacitors, Lithium Capacitors, Post Lithium and Flywheels for Electric Buses), Market Trends, Forecasts and Key Players
■商品番号 idt/idtebuslib ■出版日 2016-03-01
■出版社 ID TechEx ■ページ数 229
■図表数 NA ■価格 GBP 3,555
■商品形態 電子媒体    
注:外貨表示の価格は購入申込日のTTSレートで換算し、消費税を加えたものが商品の購入価格になります。
レポート概要
この調査レポートは電気バス向けリチウムイオン電池市場を調査し、市場全般や技術、関連企業に関する解説や市場予測を掲載しています。

対象となる技術は下記の通りです。
リン酸鉄リチウム (LFP)
NMC
マンガン酸リチウム(LMO)
リチウムマグネシウムリン酸鉄 (LFMP)
ニッケル酸リチウム (NCA)
電気二重層キャパシタ(スーパーキャパシタ)
リチウムキャパシタ
ポストリチウム
フライホイール

This report gives an in-depth market analysis on Li-ion batteries and electric buses (under 8 ton and over 8 ton hybrid and electric buses) highlighting battery type and performance (in terms of battery chemistry, electric range, energy and power capacity) as well as company profiles of the main industrial players. The report also covers a benchmark of various Li-ion variants used in electric vehicles, current status of the battery chemistry used in electric buses and predicts the growth prospects of the electric bus Li-ion battery market (taking into account the market share for advanced and post lithium ion batteries) over the coming decade. In addition, the report provides market forecasts for demand and sales volumes of Li-ion batteries and large electric buses from 2016 to 2026, current market share and size and key players in the battery and electric bus industry.

Key questions addressed in this report include:
What are the driving factors for the adoption of electric buses?
What are the different types of electric buses?
What are the different Li-ion battery chemistries used in electric buses?
How do the various Li-ion variants compare in terms of performance, life and safety and these parameters affect the type of batteries selected by electric bus manufacturers?
What are the current limitations of Li-ion batteries with regards to electric buses?
What is the current dynamics of Li-ion batteries used in electric buses?
Who are the key players in the electric bus market and Li-ion battery market for electric buses?
How quickly will the markets for electric buses and Li-ion batteries grow?
What is the current market share of Li-ion battery manufacturers for electric buses?
What are the current Li-ion battery chemistries used in electric buses and what are the future prospects?
How does the Li-ion battery market for electric buses compare with other addressable market such as consumer electronics, wearable technology etc.?
Is there a substantial market opening for Li-ion batteries in 48V mild hybrid vehicles?
What are the other types of energy storage systems used in electric buses?
What role would supercapacitors, hybrid supercapacitors, fuel cells, advanced and post lithium batteries and flywheels play as energy storage systems in electric buses?

This report gives 10 year forecasts up to 2026 in the following segments:
Sales volume forecast for electric buses
Electric bus market value, 2015-2026
Global Li-ion battery market value for electric bus, 2016-2026
Battery market of Li-ion variant by % sales volume. Scenario 1: "business-as-usual" forecast
Battery market of Li-ion variant by % sales volume. Scenario 2: "Chinese government intervention" forecast
Battery market of anode chemistry by % sales volume
Electric bus and Li-ion battery pack price forecast
Battery volume demand in GWh by end use segment, 2016-2026

目次

Table of Contents


EXECUTIVE SUMMARY

1. WHY ELECTRIC VEHICLES?

1.1. Human sources of carbon dioxide (CO2)
1.2. Carbon dioxide emissions from fossil fuel combustion
1.3. Measures to reduce transport CO2 emissions
1.4. Targets for transport vehicle CO2 emissions
1.5. Drivers for the adoption of Electric Vehicles
1.6. Why are electric buses more exciting?
1.7. Electric buses: future urban mobility
1.8. Carbon dioxide emissions in transportation
1.9. Transport of people 2010-2025
1.10. Definitions and Terminologies
1.11. Basic Terms of Battery Performance and Characterisation

2. TYPES OF ELECTRIC BUSES AND BATTERIES

2.1. Types of pure electric bus
2.2. Trends in e-bus Technology - Case example
2.3. Types of battery
2.4. Different applications of batteries
2.5. Addressable battery market by end user segment in $ billion
2.6. Why Lithium Ion batteries?
2.7. Qualitative comparison of current major automotive battery technology groups
2.8. Comparison of specific energy and energy density of various battery systems
2.9. Advantages of Li-ion Batteries
2.10. Disadvantages of Li-ion Batteries
2.11. Current challenges facing automotive Li-ion batteries
2.12. Battery requirements for electric buses
2.13. Battery cell construction
2.14. Basic operation of a Li-ion cell
2.15. The main components of a battery cell
2.16. Lithium-ion battery components, functions, and main materials
2.17. Potential and capacity of different cathode materials
2.18. Potential and capacity of different anode materials
2.19. Lithium-ion battery cell, module and pack
2.20. Types of cell construction

3. EXAMPLES OF LITHIUM ION VARIANTS

3.1. Lithium variants
3.2. Lithium Cobalt Oxide (LiCoO2)
3.3. Lithium iron phosphate (LiFePO4)
3.4. Lithium Nickel manganese cobalt (LiNiMnCoO2)
3.5. Lithium Manganese Oxide Spinel (LiMn2O4)
3.6. Lithium Nickel Oxide (LiNiO2) and variant
3.7. Comparison of main lithium variant
3.8. Thermal stability of different cathodes (1)
3.9. Thermal stability of different cathodes (2)
3.10. Cost of cathode metals
3.11. Anodes for Li-ion batteries
3.12. Lithium ion batteries by cathode type
3.13. Lithium ion batteries by anode type
3.14. Key parameters for automotive Li-ion variants
3.15. Some of the main Li-ion battery manufacturers
3.16. Cost analysis for automotive Li-ion cell
3.17. Cost analysis for automotive Li-ion batteries
3.18. Lithium ion battery price forecast
3.19. Mapping: Top electric bus manufacturers and Li-ion battery pack suppliers
3.20. Examples of top electric buses, battery type and performance
3.21. Li-ion battery manufacturers by location
3.22. Electric bus manufacturers by location

4. COMPANY PROFILES: KEY ELECTRIC BUS MANUFACTURERS

4.1. Company Profile: Yutong
4.2. Company Profile: BYD
4.3. Company Profile: Ankai
4.4. Company Profile: King Long
4.5. Company Profile: CSR Times Electric Vehicle Co., Ltd.
4.6. Company Profile: Dongfeng Motor Corporation
4.7. Company Profile: Sunwin Bus Corporation
4.8. Company Profile: Zhongtong
4.9. Company Profile: Hengtong
4.10. Company Profile: Proterra
4.11. Company Profile: Solaris
4.12. Company Profile: Hybricon Bus System

5. COMPANY PROFILES: KEY LI-ION BATTERY MANUFACTURERS

5.1. Tianjin Lishen Battery Co., Ltd.
5.2. Battery Company: BYD
5.3. BYD Production Capability
5.4. Applications of BYD LFP battery
5.5. BYD LFP used in electric vehicles
5.6. Specification of BYD LFP Battery
5.7. Battery Company: A123 Systems, LLC.
5.8. A123 battery specification
5.9. Altairnano
5.10. LG Chem, Ltd
5.11. Automotive Energy Supply Corporation (AESC)
5.12. AESC battery specification
5.13. Johnson Controls, Inc.
5.14. XALT Energy
5.15. GS Yuasa Corporation
5.16. Hitachi Vehicle Energy, Ltd.
5.17. Zhejiang Tianneng Energy Technology Co., Ltd
5.18. SK Innovation Co., Ltd
5.19. Specification of SK Innovation module, Pack and BMS
5.20. Electrovaya Inc.
5.21. Saft
5.22. Saft's battery system for commercial vehicles
5.23. Battery company: Toshiba
5.24. Features of Toshiba's SCIB
5.25. Production plant for Toshiba's SCIB
5.26. Toshiba R&D activities

6. BATTERY DYNAMICS IN ELECTRIC BUSES

6.1. Battery capacity vs Gross vehicle weight
6.2. Battery capacity vs Passenger-range
6.3. Passenger capacity vs e-bus weight
6.4. Li-ion battery sales volume based on capacity
6.5. Li-ion battery sales, MWh for electric bus, 2015
6.6. Li-ion battery, MWh, used in electric buses, 2015
6.7. Battery market value based on e-bus manufacturers, 2015
6.8. Electric bus manufacturers: sales volume 2015
6.9. Market share: electric bus manufacturers, 2015
6.10. Market share: Li-ion battery manufacturers for e-buses

7. MARKET FORECASTS 2016-2026

7.1. Sales volume forecast for large electric buses
7.2. Electric bus market value, 2016-2026
7.3. Global Li-ion battery market value for e-bus, 2016-2026
7.4. Battery market of Li-ion variant by % sales volume (1)
7.5. Assumptions for the "business-as-usual" forecast
7.6. Battery market of anode chemistry by % sales volume
7.7. China intervention in the e-bus battery market
7.8. Battery market of Li-ion variant by % sales volume (2)
7.9. Assumptions for the "Chinese intervention" forecast
7.10. Electric bus and Li-ion battery average price forecast
7.11. Battery volume demand in GWh by end use segment 2016-2026
7.12. Assumptions on the forecast

8. MILD HYBRID 48V VEHICLES

8.1. 48V Mild Hybrid Vehicles
8.2. Why 48V "mild hybrid" architecture for conventional internal combustion engine vehicle?
8.3. Continental view of evolution of electrified powertrains 48V mild hybrid vehicles are the missing transitional technology in the evolution of land vehicles in particular, mostly on-road
8.4. The key components of these system options are mostly different
8.5. The technological heart of a 48V mild hybrid system
8.6. IDTechEx technology timeline 2016-2026 - 48V and competitive market and system developments
8.7. IDTechEx technology timeline 2016-2026 - batteries, rotating machines and electrified components
8.8. Jaguar LandRover/Delta 2015 Roadmap
8.9. Types of conventional and electric vehicle - two 48V opportunities
8.10. Batteries for 48V mild hybrid: overview
8.11. 48V Battery choices
8.12. Lithium-ion 48V mild hybrid batteries are currently favoured
8.13. Lithium-ion battery for 14V mild hybrids - LGChem
8.14. Bosch lithium-ion 48V mild hybrid battery
8.15. After lithium-ion? Lithium-sulfur and sodium-ion are worth watching but not yet optimal for most 48V or pure EV batteries

9. BUS ENERGY STORAGE BEYOND BATTERIES

9.1. Performance Comparisons 1
9.2. Vehicles where Li-ion battery has been replaced by supercapacitors
9.3. Energy storage devices and their characteristics
9.4. Operational principles of different systems
9.5. Fuel cells as range extenders
9.6. Fuel cells for traction
9.7. Problems with fuel cells
9.8. Roadmaps have not been met
9.9. Performance Comparisons 2
9.10. Supercapacitors are often used across Li-ion batteries
9.11. Car or bus bodywork becomes a supercapacitor !
9.12. Supercapacitors to Li-ion batteries - a spectrum of functional tailoring
9.13. Flywheels - What are they? Who likes them?
9.14. Flybrid KERS used by Wrightbus UK on hybrid buses
9.15. Flywheel KERS mechanical
9.16. Flywheel scope for mechanical versions

10. CONCLUSIONS AND OUTLOOK

11. ANALYSIS OF OVER 140 LITHIUM-BASED RECHARGEABLE BATTERY MANUFACTURERS


営業時間:月曜〜金曜 9:30ー18:00
TEL:03-5545-9597 FAX:03-5545-9598 E-mail:ogura@udr-inc.com
世界の自動車市場の総合サイト:Autosurvey.JP
運営:株式会社ユーディーアール
Copyright (C) Universal Data Resources , Inc. All Rights Reserved.